

GC433-TC011P

433MHz 无线透传模块用户规格书

(V2.2)

目录

— .	模块介绍	4
	1.1 模块概述	4
	1.2 模块特点	4
	1.3 应用场景	5
= .	模块参数	6
	2.1 模块基本电气参数图	6
\equiv .	模块说明	7
	3.1 模块尺寸图	7
	3.2 模块引脚功能定义图	7
	3.3 引脚功能说明	8
	3.4 模块连接图	8
四、	测试套件	9
五、	用户需知*	9
	5.1 模块出厂默认参数	10
	5.2 模块配置软件	10
	5.3 XCOM V2.0串口工具	11
六、	AT指令说明 ·	11
	6.1 AT+MODE - 设置模块工作模式 ·	11
	6.2 AT+UART - 设置模块串口参数 ·	12

	6.3 AT+PWR - 设置模块发射功率等级	12
	6.4 AT+RFBR - 设置模块空中波特率	12
	6.5 AT+RFCH - 设置模块工作信道	13
	6.6 AT+PID - 设置模块网络 ID	13
	6.7 AT+LPWR - 设置低功耗模式	13
	6.8 AT+ALL - 查询模块所有参数	14
	6.9 AT+DEFT - 恢复模块出厂设置	14
	6.10 AT+RST - 模块软件复位 ·	14
	6.11 AT+VER - 获取模块固件版本信息	14
七、	天线选择	15
	7.1 天线使用注意事项	15
八、	硬件设计	15
九、	传输距离不理想	16
+、	模块易损坏	16
	-、误码率太高 ·	16

版本	更改日期	更改说明
V1.0	2021年12月7日	初始版本
V1.1	2021年12月14日	修改 AT+RFCH 指令描述和最大数据包长度
V2.0	2022年4月4日	1.格式优化 2.增加天线选择 3.增加测试套件
V2.1	2022年10月9日	修改模块概述
V2.2	2023年10月26日	更新参数

一、模块介绍

(模块以实物为准)

1.1 模块概述

GC433-TC011P 是基于Siliconlabs 射频芯片 SI4438 上与内置高性能 32 位 M0 单片机,此模块是高度集成半双工微功率 433MHz 无线数据传输模块。前期的射频与内部开发已经由我司全部完成,而用户无需编写复杂的设置与传输程序,只需要串口对接就可实现数据传输。模块同时支持宽电压运行,使之能够应用在非常广泛的领域。

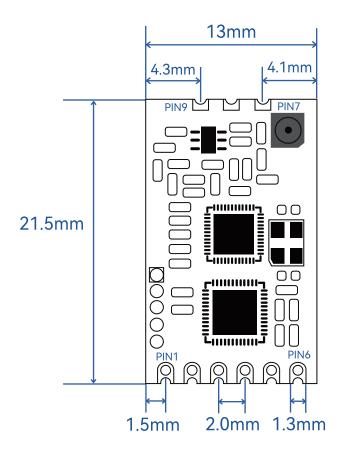
1.2 模块特点

- 支持433MHz频段,穿透性强
- 多信道选择,支持32个信道
- 功率可软件配置,最大发射功率+20dBm
- 射频空中波特率可调
- 串口通讯接口, 串口波特率可软件配置
- 标准供电电压+3.3V

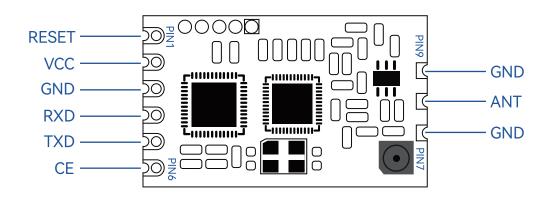
- 工业级标准设计,支持-40~85℃下长时间使用
- 超小体积,仅21.5x13mm
- 邮票孔设计,方便批量生产
- 预留插件接口,方便批量生产

1.3 应用场景

- 智能扫地机
- 智能擦窗机
- 智能家居控制
- 智慧酒店控制
- 智慧交通道钉
- 智慧路灯
- 烟雾报警器
- 工业遥控器
- 电单车充电桩
- 烟雾报警器


二、模块参数

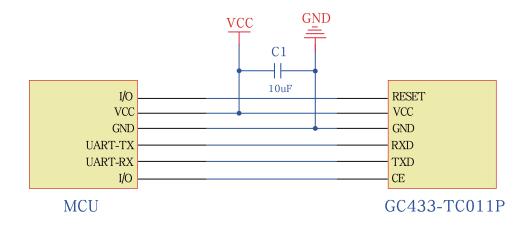
2.1 模块基本电气参数图


GC433-TC011P 技术参数				
温度范围	-40 ~ 85°C			
工作频段	从420MHz-444.8MHz,每个信道间隔800Hz			
调制方式	GFSK			
最大发射功率	+20dBm			
接收灵敏度	-123dBm@0.6Kbps			
空中传输速率	0.6Kbps/1.2Kbps/2.4Kbps/4.8Kbps/10Kbps/50Kbps/100 Kbps/500Kbps			
传输距离	空旷 1500m@0.6Kbps			
波特率	9600/19200/38400/57600/115200 可选			
数据位	8 位 (固定)			
停止位	1 位 (固定)			
校验位	无校验(固定)			
串口数据包最大长度	串口最大缓存252字节,大于63字节自动分包			
VCC电源输入电压	1.8 ~ 3.6V,典型供电 3.3V			
发射电流	110mA(+20dBm)			
接收电流 19mA				
休眠电流	10uA			
尺寸	21.5mm × 13mm × 2.3mm			
天线接口	可选择邮票孔 IO 口或 IPEX 座子,阻抗约 50 欧姆			

三、模块说明

3.1 模块尺寸图

3.2 模块引脚功能定义图



3.3引脚功能说明

序号	接口名	功能	
1	RESET	复位信号,低电平有效,正常使用拉高或悬空	
2	VCC	电源+3.3V	
3	GND	地	
4	RXD	UART RX	
5	TXD	UART TX	
6	CE	模块 SLEEP 控制引脚, 在模块开启低功耗模式下有效, 默认是关闭的(高电平或悬空模块进入 SLEEP 模式, 低电平下降沿唤醒模块,唤醒后需要延时 2ms 以上 才能正常工作)	
7	GND	地	
8	ANT	天线接口,等效阻抗约 50Ω	
9	GND	地	

3.4 模块连接图

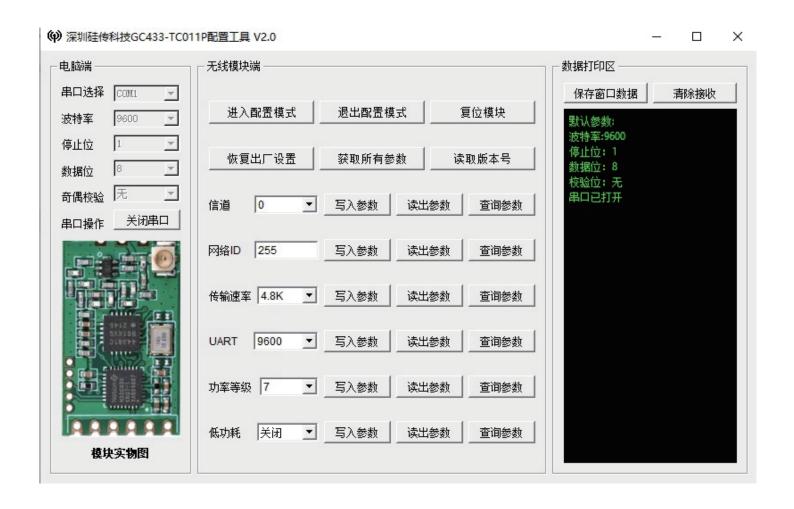
电话: 0755-33592127

注意: 1.CE引脚只有在模块开启低功耗模式下才有效,详见CE引脚说明 2.MCU的UART-TX接模块的RXD、MCU的UART-RX接模块的TXD

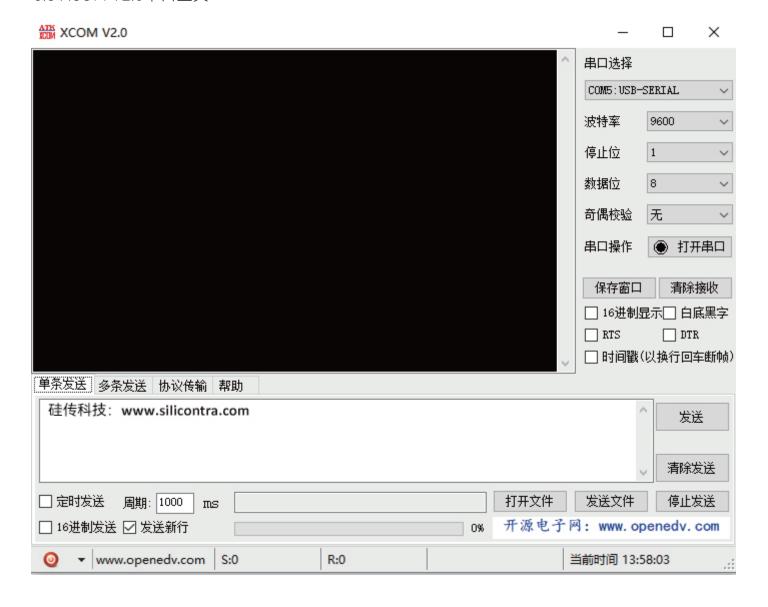
四、测试套件

为方便广大客户需求,更效率的进行产品的快发以及快速评估无线模块方案的可行性,用户可在淘宝平台购买测试套件。

GC433-TC011P套件


五、用户需知*

上电延时 模组从上电到初始化完成大概有80ms的延时,建议上电后,外部 MCU 延时一定时间后再进行串口通信或者使能操作。	
AT 指令使用时以"\r\n"为结束符,即以新行为结束符。某些串口助手选择性自动添加称之为"发送新行",只要勾选了"发送新行",命令结尾就不需要添加"\r\n"。"\r"=0x0D,表示回车符(RETURN),"\n"=0x0A,表示新行(NEW LINE)。	
透传数据分包机制 内部自动分包长度 63 字节,当串口一帧数据长度大于 63 时,内部会自动包发送,内部有 4 级缓存,每级 63 字节。	
功耗设计 如开启低功耗模式,设置CE脚置高电平或悬空,可以使模组进入休眠,电流功耗<5uA,此时串口不可用。	
透传数据吞吐量 透传数据的吞吐量与射频的空中波特率和串口的波特率有关,不同串率帧与帧之间的间隔时间不同,若需要提高吞吐量,需配合好空中波串口波特率。	


5.1模块的出厂默认参数如下:

射频信道	0(420MHz)		
功率等级	7(20dBm)		
空中速率	4800(4.8Kbps)		
串口波特率	9600(可设置) (固定:8 位数据位、1 位停止位、无校验)		
网络 ID	255		
低功耗模式	0(关闭低功耗模式)		

5.2 模块配置软件

5.3 XCOM V2.0串口工具

六、AT指令说明:用户如需要自己用串口助手配置模块的某一项参数,需要按照我司的AT指令集进行输入

6.1 AT+MODE - 设置模块工作模式

指令	设置模式: AT+MODE= <mode>\r\n</mode>		
返回	OK\r\n		
参数说明	mode=0: 进入 AT 指令模式 mode=1: 退出 AT 指令模式(透传模式)		
注意事项	立即生效,掉电不保存,上电默认是透传模式		

6.2 AT+UART - 设置模块串口参数

指令	查询当前值: AT+UART=?\r\n	设置: AT+UART= <baud>\r\n</baud>	查参数: AT+UART?\r\n
返回	AT+UART= <baud>\r\n</baud>	OK\r\n 或 Error\r\n	BAUD:9600,19200,3840 0,57600,115200
参数说明	baud: 串口波特率 默认: 9600	baud: 串口波特率	可设置的值
注意事项	退出 AT 指令模式时生效,支持掉电保存		

6.3 AT+PWR - 设置模块发射功率等级

指令	查询当前值: AT+PWR=?\r\n	设置: AT+PWR= <power>\r\n</power>	查参数: AT+PWR?\r\n
返回	AT+PWR= <power>\r\n</power>	OK\r\n 或 Error\r\n	PWR:0~7\r\n
参数说明	power: 当前发射功率等级 默认:7	power: 发射功率等级	可设置的值 (0:-15dBm, 1:-10dBm, 2:-5dBm,3:0dBm 4:5dBm, 5:10dBm, 6:15dBm, 7:20dBm)
注意事项	立即生效,支持掉电保存		

6.4 AT+RFBR - 设置模块空中波特率

指令	查询当前值: AT+RFBR=?\r\n	设置: AT+RFBR= <baud>\r\n</baud>	查参数: AT+RFBR?\r\n
返回	AT+RFBR= <baud>\r\n</baud>	OK\r\n 或 Error\r\n	RFBR:600,1200,2400,480 0,10000,50000,100000,5 00000\r\n
参数说明	baud: 当前空中波特率 默认: 4800(4.8Kbps)	baud: 设置空中波特率	可设置的值,单位: bps
注意事项	立即生效,支持掉电保存		

6.5 AT+RFCH - 设置模块工作信道

指令	查询当前值: AT+RFCH=?\r\n	设置: AT+RFCH= <channel>\r\n</channel>	查参数: AT+RFCH?\r\n
返回	AT+CH= <channel>\r\n</channel>	OK\r\n 或 Error\r\n	RFCH:0~31\r\n
参数说明	channel: 当前工作信道 默认: 0	channel: 设置工作信道	可设置的值 (0:420MHz, 1:420.8MHz, 2:421.6, 31:444.8MHz)
注意事项	立即生效,支持掉电保存		

6.6 AT+PID - 设置模块网络 ID

指令	查询当前值: AT+PID=?\r\n	设置: AT+PID= <id>\r\n</id>	查参数: AT+PID?\r\n
返回	AT+PID= <id>\r\n</id>	OK\r\n 或 Error\r\n	PID:0 ~ 255\r\n
参数说明	ID: 当前网络 ID 默认:255	ID: 设置网络 ID	可设置的值
注意事项	立即生效,支持掉电保存		

6.7 AT+LPWR - 设置低功耗模式

指令	查询当前值: AT+LPWR=?\r\n	设置: AT+LPWR= <mode>\r\n</mode>	查参数: AT+LPWR?\r\n
返回	AT+LPWR= <mode>\r\n</mode>	OK\r\n 或 Error\r\n	LPWR:0 ~ 1\r\n
参数说明	mode=0: 关闭低功耗模式 mode=1: 开启低功耗模式 默认: 0		可设置的值
注意事项	退出 AT 指令模式时生效,	支持掉电保存,低功耗模式	t开启后 CE 引脚生效

6.8 AT+ALL - 查询模块所有参数

指令	AT+ALL\r\n
返回	AT+RFCH=0\r\n AT+PWR=7\r\n AT+RFBR=4800\r\n AT+PID=255\r\n AT+UART=9600\r\n AT+LPWR=0\r\n

6.9 AT+DEFT - 恢复模块出厂设置

指令	AT+DEFT\r\n
返回	OK\r\n
注意事项	立即生效,设置完成模块自动立即复位

6.10 AT+RST - 模块软件复位

指令	AT+RST\r\n
返回	OK\r\n
注意事项	立即生效,复位模块

6.11 AT+VER - 获取模块固件版本信息

指令	AT+VER\r\n
返回	AT+VER= <version>\r\n</version>

七、天线选择

天线是通信系统的重要组成部分,其性能的好坏会直接影响通信质量,模块要求的天线阻抗为 50 欧姆。通用型的天线有弹簧天线·导线·SMA 转接棒状·小吸盘等,用户根据自身的产品结构与应用环境来选择相对应天线,为使模块处于最优工作状态,我司也会为客户提供匹配天线的工作服务,同时为最大程度配合模块使用推荐使用本司提供的天线。

7.1 天线使用注意事项

- 天线安装结构对模块性能有较大影响,需要更好的效果需要天线外露,最好垂直向上。当模块安装于机壳内部时,可使用优质的天线延长线,将天线延伸至机壳外部;如遇产品不允许外露就需要匹配弹簧天线或者FPC天线。
- 天线如安装在金属壳内部、将导致传输距离极大削弱。
- 如选购吸盘天线,引线尽可能拉直,吸盘底盘尽可能吸附在金属物体上。

八、硬件设计

- 推荐使用直流稳压电源对该模块进行供电、电源纹波系数尽量小、模块需可靠接地。
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏。
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏。
- 请检查电源稳定性, 电压不能大幅频繁波动。
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作。
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分。

- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在Top Layer,在模块接触部分的Top Layer铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在Bottom Layer。
- 假设模块焊接或放置在 Top Layer,在 Bottom Layer 或者其他层随意走线也是错误的,会在不同程度影响模块的杂散以及接收灵敏度。
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当 远离模块、若情况允许可以做适当的隔离与屏蔽。
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽。

九、传输距离不理想

- 当存在直线通信有障碍或者遮挡时,通信距离会相应的衰减。
- 温度、湿度、同频干扰、会导致通信丢包率提高。
- 地面吸收、反射无线电波、靠近地面测试效果较差。
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重。
- 空中速率设置过高(空中速率越高,距离越近)。
- 室温下电源低压低于推荐值,电压越低发功率越小。
- 使用天线与模块匹配程度较差或天线本身品质问题。

十、模块易损坏

- 请检查供电电源、确保在推荐供电电压之间、如超过最大值会造成模块永久性损坏。
- 请检查电源稳定性, 电压不能波动。
- 请确保安装使用过程防静电操作、高频器件静电敏感性。
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件。
- 如果产品没有特殊需求不建议在过高、过低温度下使用。

十一、误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰。
- 电源不理想也可能造成乱码,务必保证电源的可靠性。
- 延长线、馈线品质差或太长,也会造成误码率偏高。